
MCP SERVER

pdfcrowd-mcp-pdf-export
Project Overview & Architecture

836
LINES OF CODE

2
MCP TOOLS

39
UNIT TESTS

6
DEPENDENCIES

v1.0.1 • MIT License • Node.js ≥18 • TypeScript • Vitest

Contents

1 What This Project Does

2 Project Structure

3 Architecture

4 Key Components

5 Data Flow

6 Type System & Schemas

7 Error Handling Strategy

8 Dependencies & How They Connect

9 Build & Test Infrastructure

10 Design Patterns

1. What This Project Does

This is a Model Context Protocol (MCP) server that gives AI agents (Claude Code, Codex CLI, Gemini
CLI) the ability to generate PDFs. It accepts HTML content, local files, or URLs, bundles any local assets,
sends them to the PDFCrowd cloud API, and writes the resulting PDF to disk.

Core loop: AI Agent → MCP tool call → Validate input → Bundle local assets → POST to PDFCrowd API → Write
PDF → Return metadata to agent

Two MCP Tools Exposed

Tool Purpose Key Inputs

pdfcrowd_create_pdf Convert content to
PDF

html | url | file , output_path , page options

pdfcrowd_info Return usage
guidance

topic : html_layout, mermaid_diagrams, local_assets,
parameters

2. Project Structure

pdfcrowd-mcp-pdf-export/

 src/

 index.ts (227 loc) — MCP server entry, tool registration, topic content

 version.ts (6 loc) — Reads VERSION from package.json

 schemas/

 index.ts (56 loc) — Zod schemas, constants, types

 services/

 pdfcrowd-client.ts (336 loc) — API client, retries, error mapping

 asset-bundler.ts (211 loc) — Asset detection, ZIP bundling

 tests/

 unit/ — 39 test cases (577 loc)

 prompt/ — 5 integration tests with fixtures

 dist/ — Compiled JS, declarations, source maps

 package.json — Metadata, scripts, deps

 tsconfig.json — ES2022, Node16 modules, strict

 vitest.config.ts — 30s test timeout

 makefile — Build and publish targets

Lines of Code Breakdown

Layer Files LOC Share

SRC Server & Tools index.ts, version.ts 233 28%

SRC Schemas schemas/index.ts 56 7%

SRC Services pdfcrowd-client.ts, asset-bundler.ts 547 65%

TEST Unit Tests 3 files 577 —

Total Production 836 100%

3. Architecture

The server is organized in three layers: protocol (MCP), validation (Zod), and services (API client + asset
bundler).

Component Diagram

stdio JSON-RPC

ZIP archive

HTTPS POST
PDF bytes Write to disk

AI Agent

(Claude / Codex / Gemini)

index.ts

MCP Server

schemas/index.ts

Zod Validation

pdfcrowd_info

Topic Handler

pdfcrowd_create_pdf

PDF Handler

asset-bundler.ts

ZIP Bundler

pdfcrowd-client.ts

API Client

PDFCrowd API Output PDF

Layer Responsibilities

Layer File Responsibility

Protocol index.ts MCP server lifecycle, tool registration, topic content, stdio transport

Validation schemas/index.ts Input validation (Zod strict + refine), type inference, JSON schema generation

Service: API pdfcrowd-
client.ts

Credential management, FormData construction, HTTPS requests, retry logic,
error mapping

Service:
Bundler

asset-bundler.ts HTML/CSS parsing, local file detection, ZIP archive creation, reference rewriting

4. Key Components

4.1 MCP Server (index.ts)

Entry point. Creates the MCP server, validates env vars, registers both tools, and connects to stdio
transport.

Static Topics

Topic Key Content

html_layout CSS reset, viewport width (1096px default), font sizing, page breaks, cover pages

mermaid_diagrams CDN URL, init config, sizing limits (6-8 nodes), CSS/HTML template

local_assets Auto-bundling docs, supported attributes, relative path resolution

Dynamic Topic

Topic Key
Generated
At

Content

parameters Runtime Full JSON Schema from Zod via zod-to-json-schema , plus usage examples and
temp file conventions

4.2 PDFCrowd Client (pdfcrowd-client.ts)

The largest component (336 loc). Handles all communication with the PDFCrowd API.

API Configuration

Constant Value

API Base URL https://api.pdfcrowd.com/convert/24.04

Auth HTTP Basic (username:apiKey)

Max Retries 2 (3 total attempts)

Retry Delay 1,000 ms

Request Timeout 120,000 ms

User-Agent pdfcrowd-mcp-pdf-export/{VER} (Node.js)

Key Functions

Function Purpose

getCredentials() Read env vars, throw if missing

isDemo() Return true when username is "demo"

buildForm() Construct multipart FormData with all fields

parseMetadata() Extract jobId, credits, pageCount from response headers

createPdf() Main entry: validate → bundle → API call → write file

getErrorGuidance() Map API error codes to actionable guidance

4.3 Asset Bundler (asset-bundler.ts)

Detects local files referenced in HTML/CSS and bundles them into a ZIP archive for the API.

Detection Patterns

Source Tags / Patterns

HTML tags img , script , video , audio , source , embed , input (src), link (href), object (data)

CSS url() patterns, recursively parsed for linked CSS files

Skipped http:// , https:// , data: , javascript: , mailto: , //

Key Functions

Function Purpose

extractHtmlRefs() Regex-based extraction from HTML tags and inline CSS

extractUrlRefs() Extract url() patterns from CSS content

resolveAssets() Resolve paths to disk, deduplicate, handle external paths

rewriteRefs() Replace original refs with ZIP-relative paths (longest-first)

bundleAssets() Main: extract → resolve → ZIP → return { zipPath, cleanup }

5. Data Flow

Conversion Pipeline

Invalid

Valid

html url

file

Missing

Found

Assets found None

5xx

Yes

No

4xx

200

Tool Call

Zod Validation

Return Error

Input Type?

text field url field

Check exists

Scan for assets

Bundle ZIP Pass file

POST API

Retries? Write PDF

Return metadata

Asset Bundling Pipeline

No Yes

HTML Content

Extract tag refs

Extract CSS url refs

Resolve to disk paths

Assets found?

Return null Parse linked CSS

Create ZIP

Rewrite refs

Return BundleResult

FormData Fields Sent to API

Field Source Notes

text / url / file Input parameter Mutually exclusive; file sent as stream

page_size page_size param A3, A4, A5, Letter

orientation orientation param portrait, landscape

margin_top/bottom/left/right margins param Same value for all four; comma-to-period normalization

content_viewport_width viewport_width param Default: 1096px

content_fit_mode Hardcoded Always "content-width"

zip_main_filename Bundler result Only when ZIP bundling is used

title title param PDF metadata (optional)

6. Type System & Schemas

Zod Schema (CreatePdfSchema)

Defined in schemas/index.ts using strict mode with a custom refinement for mutual exclusivity.

z.object({

 html: z.string().optional(),

 url: z.string().url().optional(),

 file: z.string().optional(),

 output_path: z.string().min(1),

 page_size: z.enum(["A3","A4","A5","Letter"]).default("A4"),

 orientation: z.enum(["portrait","landscape"]).default("portrait"),

 margins: z.union([z.string().regex(MARGIN_REGEX), z.literal(0)])

 .default("10mm"),

 viewport_width: z.number().int().min(96).max(65000).optional(),

 title: z.string().optional(),

}).strict()

 .refine(d => exactly one of html/url/file is set)

Schema Constants

Constant Value

PAGE_SIZES ["A3", "A4", "A5", "Letter"]

ORIENTATIONS ["portrait", "landscape"]

DEFAULT_MARGIN 10 (mm)

DEFAULT_VIEWPORT_WIDTH "1096px"

MIN/MAX_VIEWPORT_WIDTH 96 / 65000

MARGIN_REGEX /^\d+([.,]\d+)?(in|mm|cm|px|pt)$/

Key Interfaces (pdfcrowd-client.ts)

Interface Fields

ConversionMetadata jobId, remainingCredits, consumedCredits, pageCount?, outputSize

ConversionResult success: true, outputPath, metadata, isDemo

ErrorResult success: false, error, httpCode?

BundleResult zipPath, mainFilename, cleanup()

7. Error Handling Strategy

Error Flow

200

5xx

Yes No

4xx

Network

API Response

Status Code?

Parse metadata

Write PDF

Retries left?

Wait 1s

Retry
Return ErrorResult

Parse error body

Map reason code

to guidance

Timeout or DNS

error message

Error Code Mapping

Code Meaning Guidance

103 License expired Renew subscription

106 Invalid credentials Check env vars

Code Meaning Guidance

105 No credits Purchase credits

120 Rate limited Reduce frequency

121 Concurrent limit Wait for current jobs

122 Demo exhausted Upgrade account

305/325 Invalid HTML Check content

320 Invalid URL Verify URL format

323 Timeout Simplify layout

337 Invalid param Check schema

357 Password protected Remove password

Design principle: Every API error is mapped to an actionable guidance message so the AI agent can self-correct
or inform the user. 4xx errors are never retried (user must fix config); only 5xx (transient server errors) trigger
automatic retries.

8. Dependencies & How They Connect

Dependency Map

creates server validates input generates schema calls

HTTP requests multipart forms calls

creates ZIPs

index.ts

@modelcontextprotocol/sdk zod zod-to-json-schema pdfcrowd-client.ts

axios form-data asset-bundler.ts

archiver

Production Dependencies

Package Version Used By Purpose

@modelcontextprotocol/sdk ^1.6.1 index.ts MCP server, tool registration, stdio transport

zod ^3.23.8 schemas/ Runtime validation, type inference, strict mode

zod-to-json-schema ^3.25.1 index.ts Generate JSON Schema for MCP tool descriptions

axios ^1.7.9 pdfcrowd-client HTTPS POST, Basic Auth, timeout handling

form-data ^4.0.0 pdfcrowd-client Multipart form encoding for API requests

archiver ^7.0.1 asset-bundler ZIP archive creation (zlib level 5)

Development Dependencies

Package Version Purpose

typescript ^5.7.2 Compiler (ES2022 target, Node16 modules, strict)

vitest ^4.0.18 Test runner (30s timeout, parallel execution)

tsx ^4.19.2 TypeScript executor for npm run dev with watch mode

@types/node ^22.10.0 Node.js type definitions (fs, path, os, etc.)

@types/archiver ^7.0.0 Archiver type definitions

9. Build & Test Infrastructure

Build Pipeline

tsc tsc tsc

src/*.ts

dist/*.js dist/*.d.ts dist/*.js.map

Executable binary

with shebang

npx pdfcrowd-mcp-pdf-

export

npm Scripts

Script Command Purpose

npm start node dist/index.js Run compiled server

npm run dev tsx watch src/index.ts Dev mode with live reload

npm run build tsc Compile TypeScript

npm test vitest run Run unit tests

npm run clean rm -rf dist Remove build output

Test Coverage

Test File Cases Covers

schemas.test.ts 23 Validation, defaults, bounds, mutual exclusion, strict mode

pdfcrowd-client.test.ts 10 Retries, auth, errors, metadata, form fields, network failures

Test File Cases Covers

asset-bundler.test.ts 6 Bundling, CSS parsing, missing files, external paths, cleanup

Integration Tests (Prompt Tests)

Prompt Validates

hello-world Single full-bleed page, text content

html-layout Multi-page (3 pages), titled sections

invoice-template HTML template merged with JSON data

local-assets Image bundling (house.png), file size >100KB

mermaid-flowchart Diagram rendering, no mermaid version text

10. Design Patterns

Discriminated Union Results

The API client returns ConversionResult | ErrorResult , using the success boolean as a discriminant. This
eliminates null checks and makes error handling explicit at every call site.

Schema-Driven Interfaces

A single Zod schema (CreatePdfSchema) serves three purposes simultaneously:

Purpose Mechanism

Runtime validation schema.parse(input)

TypeScript types z.infer<typeof schema>

MCP tool description zodToJsonSchema(schema)

Guaranteed Cleanup

The asset bundler returns a cleanup() function. The caller uses it in a finally block, ensuring temp
directories are removed even when the API call fails or throws.

Error Guidance as Data

Rather than generic error messages, every PDFCrowd error code maps to a specific guidance string. This
lets AI agents self-correct without human intervention—a critical design choice for an MCP tool that runs
inside autonomous workflows.

Longest-First Replacement

When rewriting asset references in HTML/CSS, the bundler sorts replacements by length (longest first) to
prevent partial substring matches—e.g., replacing img/bg.png before img/bg.png?v=2 .

Stream-Based File Handling

File uploads use fs.createReadStream() instead of reading entire files into memory. This keeps memory
usage bounded even for large HTML documents with many assets.

