pdfcrowd-mcp-pdf-export

Project Overview & Architecture

836 2 39 6

LINES OF CODE MCP TOOLS UNIT TESTS DEPENDENCIES

v1.0.1 « MIT License * Node.js 218 * TypeScript ¢ Vitest

Contents

1 What This Project Does

2 Project Structure

3 Architecture

4 Key Components

5 Data Flow

6 Type System & Schemas

7 Error Handling Strategy

8 Dependencies & How They Connect
9 Build & Test Infrastructure

10 Design Patterns

1. What This Project Does

This is a Model Context Protocol (MCP) server that gives Al agents (Claude Code, Codex CLI, Gemini
CLI) the ability to generate PDFs. It accepts HTML content, local files, or URLs, bundles any local assets,
sends them to the PDFCrowd cloud API, and writes the resulting PDF to disk.

Core loop: Al Agent — MCP tool call — Validate input — Bundle local assets — POST to PDFCrowd APl — Write

PDF — Return metadata to agent

Two MCP Tools Exposed

Tool Purpose Key Inputs
pdfcrowd create pdf Convert content to html | url | file, output path , page options
PDF
pdfcrowd info Return usage topic : html_layout, mermaid_diagrams, local_assets,

guidance parameters

2. Project Structure

pdfcrowd-mcp-pdf-export/
src/
index.ts (227 loc) — MCP server entry, tool registration, topic content
version.ts (6 loc) — Reads VERSION from package.json
schemas/
index.ts (56 loc) — Zod schemas, constants, types
services/
pdfcrowd-client.ts (336 loc) — API client, retries, error mapping
asset-bundler.ts (211 loc) — Asset detection, ZIP bundling
tests/
unit/ — 39 test cases (577 loc)
prompt/ — 5 integration tests with fixtures
dist/ — Compiled JS, declarations, source maps
package.json — Metadata, scripts, deps
tsconfig.json — ES2022, Nodel6 modules, strict
vitest.config.ts - 30s test timeout

makefile — Build and publish targets

Lines of Code Breakdown

Layer Files LOC Share
SRC Server & Tools index.ts, version.ts 233 28%
SRC Schemas schemas/index.ts 56 7%
SRC Services pdfcrowd-client.ts, asset-bundler.ts 547 65%
TEST Unit Tests 3 files 577 —

Total Production 836 100%

3. Architecture

The server is organized in three layers: protocol (MCP), validation (Zod), and services (API client + asset

bundler).

Component Diagram

Al Agent

(Claude / Codex / Gemini)

stdio JSON-RPC

|

index.ts
MCP Server

-

schemas/index.ts
Zod Validation

N

Layer Responsibilities

pdfcrowd_info
Topic Handler

pdfcrowd_create_pdf
PDF Handler

)

asset-bundler.ts
ZIP Bundler

|

ZIP archive

N

pdfcrowd-client.ts

API Client
HTTPS POS"'/ A \
Q‘ PDF bytes Write to disk
PDFCrowd API Output PDF

Layer File Responsibility

Protocol index.ts MCP server lifecycle, tool registration, topic content, stdio transport

Validation schemas/index.ts Input validation (Zod strict + refine), type inference, JSON schema generation

Service: API pdfcrowd- Credential management, FormData construction, HTTPS requests, retry logic,
client.ts error mapping

Service: asset-bundler.ts HTML/CSS parsing, local file detection, ZIP archive creation, reference rewriting

Bundler

4. Key Components

4.1 MCP Server (index.ts)

Entry point. Creates the MCP server, validates env vars, registers both tools, and connects to stdio
transport.

Static Topics

Topic Key Content

html layout CSS reset, viewport width (1096px default), font sizing, page breaks, cover pages
mermaid diagrams CDN URL, init config, sizing limits (6-8 nodes), CSS/HTML template
local assets Auto-bundling docs, supported attributes, relative path resolution

Dynamic Topic

Generated

Topic Key At Content

parameters Runtime Full JSON Schema from Zod via zod-to-json-schema , plus usage examples and
temp file conventions

4.2 PDFCrowd Client (pdfcrowd-client.ts)
The largest component (336 loc). Handles all communication with the PDFCrowd API.

API Configuration

Constant Value

APl Base URL https://api.pdfcrowd.com/convert/24.04
Auth HTTP Basic (username:apiKey)

Max Retries 2 (3 total attempts)

Retry Delay 1,000 ms

Request Timeout 120,000 ms

User-Agent pdfcrowd-mcp-pdf-export/{VER} (Node.js)

Key Functions

getCredentials() Read env vars, throw if missing

isDemo() Return true when username is "demo"

buildForm() Construct multipart FormData with all fields
parseMetadata() Extract jobld, credits, pageCount from response headers
createPdf () Main entry: validate — bundle — API call — write file
getErrorGuidance() Map API error codes to actionable guidance

4.3 Asset Bundler (asset-bundler.ts)
Detects local files referenced in HTML/CSS and bundles them into a ZIP archive for the API.

Detection Patterns

HTML tags img, script, video, audio, source, embed, input (src), link (href), object (data)
CSS url() patterns, recursively parsed for linked CSS files
Skipped http://, https://, data: , javascript: , mailto: , //

Key Functions

extractHtmlRefs () Regex-based extraction from HTML tags and inline CSS
extractUrlRefs() Extract url() patterns from CSS content
resolveAssets() Resolve paths to disk, deduplicate, handle external paths
rewriteRefs() Replace original refs with ZIP-relative paths (longest-first)

bundleAssets() Main: extract — resolve — ZIP — return { zipPath, cleanup }

5. Data Flow

Conversion Pipeline

Invalid

Tool Call

Y

Zod Validation

file

{

Check exists

Missing

No

Y

Return Error

Return metadata

Found html url
Scan for assets
Assets found None
{ } , ,
Bundle ZIP Pass file text field url field
POST API
sxx /
Yes — 200
4xx Write PDF

Asset Bundling Pipeline

HTML Content

Extract tag refs

Extract CSS url refs

Resolve to disk paths

No

!

Assets found?

Yes

l

Return null

Parse linked CSS

Create ZIP

Rewrite refs

Return BundleResult

FormData Fields Sent to API

Field Source
text / url / file Input parameter
page size page_size param
orientation orientation param
margin_top/bottom/left/right margins param
content viewport width
content fit mode Hardcoded
zip _main_filename Bundler result

title title param

viewport_width param

Notes

Mutually exclusive; file sent as stream

A3, A4, A5, Letter

portrait, landscape

Same value for all four; comma-to-period normalization
Default: 1096px

Always "content-width"

Only when ZIP bundling is used

PDF metadata (optional)

6. Type System & Schemas

Zod Schema (CreatePdfSchema)

Defined in schemas/index.ts using strict mode with a custom refinement for mutual exclusivity.

z.object({
html: z.string().optional(),
url: z.string().url().optional(),
file: z.string().optional(),
output path: z.string().min(1),
page size: z.enum(["A3","A4" "A5","Letter"]).default("A4"),
orientation: z.enum(["portrait","landscape"]).default("portrait"),
margins: z.union([z.string() .regex(MARGIN REGEX), z.literal(0)])

.default("10mm"),
viewport width: z.number().int().min(96).max(65000).optional(),
title: z.string().optional(),
}).strict()
.refine(d => exactly one of html/url/file is set)

Schema Constants

Constant Value

PAGE_SIZES ["A3", "A4", "A5", "Letter"]
ORIENTATIONS ["portrait", "landscape"]
DEFAULT_MARGIN 10 (mm)
DEFAULT_VIEWPORT_WIDTH "1096px"
MIN/MAX_VIEWPORT_WIDTH 96 / 65000

MARGIN_REGEX /7Nd+([., I\d+) ?(in|mm|cm|px|pt)$/

Key Interfaces (pdfcrowd-client.ts)

Interface Fields

ConversionMetadata jobld, remainingCredits, consumedCredits, pageCount?, outputSize
ConversionResult success: true, outputPath, metadata, isDemo
ErrorResult success: false, error, httpCode?

BundleResult zipPath, mainFilename, cleanup()

7. Error Handling Strategy

Error Flow

AP| Response

Status Code?

200
Parse metadat
se‘ ctadata 5xx Parse error body Network
Write PDF
Map reason code Timeout or DNS

Retries left? .
to guidance error message

Yes No\
Wait 1s
Return ErrorResult
Retry
Error Code Mapping
Code Meaning Guidance
103 License expired Renew subscription

106 Invalid credentials Check env vars

Code

105

120

121

122

305/325

320

323

337

357

Meaning

No credits

Rate limited
Concurrent limit
Demo exhausted
Invalid HTML
Invalid URL
Timeout

Invalid param

Password protected

Guidance
Purchase credits
Reduce frequency
Wait for current jobs
Upgrade account
Check content
Verify URL format
Simplify layout
Check schema

Remove password

Design principle: Every API error is mapped to an actionable guidance message so the Al agent can self-correct

or inform the user. 4xx errors are never retried (user must fix config); only 5xx (transient server errors) trigger

automatic retries.

8. Dependencies & How They Connect

Dependency Map

index.ts
creates server validates input generates schema calls
@modelcontextprotocol/sdk zod zod-to-json-schema pdfcrowd-client.ts
HTTP requests multipart forms calls
axios form-data asset-bundler.ts
creates ZIPs
archiver
Production Dependencies
Package Version Used By Purpose
@modelcontextprotocol/sdk 7M.6.1 index.ts MCP server, tool registration, stdio transport
zod 73.23.8 schemas/ Runtime validation, type inference, strict mode
zod-to-json-schema 73.251 index.ts Generate JSON Schema for MCP tool descriptions
axios M.T7.9 pdfcrowd-client HTTPS POST, Basic Auth, timeout handling
form-data 74.0.0 pdfcrowd-client Multipart form encoding for APl requests
archiver A7.0.1 asset-bundler ZIP archive creation (zlib level 5)
Development Dependencies

Package Version Purpose

typescript A5.7.2 Compiler (ES2022 target, Node16 modules, strict)

vitest 74.0.18 Test runner (30s timeout, parallel execution)

tsx 7 .19.2 TypeScript executor for npm run dev with watch mode
@types/node 722.10.0 Node.js type definitions (fs, path, os, etc.)

@types/archiver A7.0.0 Archiver type definitions

9. Build & Test Infrastructure

Build Pipeline

src/*.ts
tsc tsc
dist/*.js dist/*.d.ts

Executable binary
with shebang

npx pdfcrowd-mcp-pdf-

export
npm Scripts
Script Command
npm start node dist/index.js
npm run dev tsx watch src/index.ts
npm run build tsc
npm test vitest run
npm run clean rm -rf dist

Test Coverage

Test File

schemas.test.ts

Cases Covers

tsc
v

dist/*.js.map

Purpose

Run compiled server

Dev mode with live reload
Compile TypeScript

Run unit tests

Remove build output

23 Validation, defaults, bounds, mutual exclusion, strict mode

pdfcrowd-client.test.ts 10 Retries, auth, errors, metadata, form fields, network failures

Test File Cases Covers

asset-bundler.test.ts 6 Bundling, CSS parsing, missing files, external paths, cleanup

Integration Tests (Prompt Tests)

Prompt Validates

hello-world Single full-bleed page, text content
html-layout Multi-page (3 pages), titled sections
invoice-template HTML template merged with JSON data
local-assets Image bundling (house.png), file size >100KB

mermaid-flowchart Diagram rendering, no mermaid version text

10. Design Patterns

Discriminated Union Results

The API client returns ConversionResult | ErrorResult , using the success boolean as a discriminant. This
eliminates null checks and makes error handling explicit at every call site.

Schema-Driven Interfaces

A single Zod schema (CreatePdfSchema) serves three purposes simultaneously:

Purpose Mechanism

Runtime validation schema.parse(input)
TypeScript types z.infer<typeof schema>
MCP tool description zodToJsonSchema (schema)

Guaranteed Cleanup

The asset bundler returns a cleanup() function. The caller usesitina finally block, ensuring temp
directories are removed even when the API call fails or throws.

Error Guidance as Data

Rather than generic error messages, every PDFCrowd error code maps to a specific guidance string. This
lets Al agents self-correct without human intervention—a critical design choice for an MCP tool that runs
inside autonomous workflows.

Longest-First Replacement

When rewriting asset references in HTML/CSS, the bundler sorts replacements by length (longest first) to
prevent partial substring matches—e.g., replacing img/bg.png before img/bg.png?v=2 .

Stream-Based File Handling

File uploads use fs.createReadStream() instead of reading entire files into memory. This keeps memory
usage bounded even for large HTML documents with many assets.

